Quotes From "The Gene: An Intimate History" By Siddhartha Mukherjee

1
If we define "beauty" as having blue eyes (and only blue eyes), then we will, indeed, find a "gene for beauty." If we define "intelligence" as the performance on only one kind of test, then we will, indeed, find a "gene for intelligence." The genome is only a mirror for the breadth or narrowness of human imagination. Siddhartha Mukherjee
Without equality, he argued, eugenics would degenerate into yet another...
2
Without equality, he argued, eugenics would degenerate into yet another mechanism by which the powerful could control the weak. Siddhartha Mukherjee
3
Intelligence...[is] not marathon rac[e]: there is no fixed criteria for success, no start or finish lines -- and running sideways or backwards, might secure victory. Siddhartha Mukherjee
4
Freaks become norms, and norms become extinct. Monster by monster, evolution advanced Siddhartha Mukherjee
5
Natures and features last until the grave Siddhartha Mukherjee
6
History repeats itself, in part because the genome repeats itself. And the genome repeats itself, in part because history does. The impulses, ambitions, fantasies, and desires that drive human history are, at least in part, encoded in the human genome. And human history has, in turn, selected genomes that carry these impulses, ambitions, fantasies, and desires. This self-fulfilling circle of logic is responsible for some of the most magnificent and evocative qualities in our species, but also some of the most reprehensible. It is far too much to ask ourselves to escape the orbit of this logic, but recognizing its inherent circularity, and being skeptical of its overreach, might protect the week from the will of the strong, and the 'mutant' from being annihilated by the 'normal'. Siddhartha Mukherjee
7
If the history of the last century taught us the dangers of empowering governments to determine genetic “fitness” (i.e., which person fits within the triangle, and who lives outside it), then the question that confronts our current era is what happens when this power devolves to the individual. It is a question that requires us to balance the desires of the individual– to carve out a life of happiness and achievement, without undue suffering– with the desires of a society that, in the short term, may be interested only in driving down the burden of disease and the expense of disability. And operating silently in the background is a third set of actors: our genes themselves, which reproduce and create new variants oblivious of our desires and compulsions– but, either directly or indirectly, acutely or obliquely, influence our desires and compulsions. Speaking at the Sorbonne in 1975, the cultural historian Michel Foucault once proposed that “a technology of abnormal individuals appears precisely when a regular network of knowledge and power has been established.” Foucault was thinking about a “regular network” of humans. But it could just as easily be a network of genes. Siddhartha Mukherjee
8
Scientists divide. We discriminate. It is the inevitable occupational hazard of our profession that we must break the world into its constituent parts -- genes, atoms, bytes -- before making it whole again. We know of no other mechanism to understand the world: to create the sum of its parts, we must begin by dividing it into the parts of the sum. Siddhartha Mukherjee
9
McKusick's belief in this paradigm-the focus on disability rather than abnormalcy-was actualized in the treatment of patients in his clinic. Patients with dwarfism, for instance, were treated by an interdisciplinary team of genetic counselors, neurologists, orthopedic surgeons, nurses, and psychiatrists trained to focus on specific disabilities of persons with short stature. Surgical interventions were reserved to correct specific deformities as they arose. The goal was not to restore "normalcy"-but vitality, joy, and function. McKusic had rediscovered the founding principles of modern genetics in the realm of human pathology. In humans as in wild flies, genetic variations abounded. Here too genetic variants, environments, and gene-environment interactions ultimately collaborated to cause phenotypes-except in this case, the "phenotype" in question was disease. Here too some genes had partial penetrance and widely variable expressivity. One gene could cause many diseases, and one disease could be caused by many genes. And here too "fitness" could not be judged in absolutes. Rather the lack of fitness-illness [italicized, sic] in colloquial terms- was defined by the relative mismatch between an organism and environment. Siddhartha Mukherjee
10
The problem with racial discrimination, though, is not the inference of a person's race from their genetic characteristics. It is quite the opposite: it is the inference of a person's characteristics from their race. The question is not, can you, given an individual's skin color, hair texture, or language, infer something about their ancestry or origin. That is a question of biological systematics -- of lineage, taxonomy, of racial geography, of biological discrimination. Of course you can -- and genomics as vastly refined that inference. You can scan any individual genome and infer rather deep insights about a person's ancestry, or place of origin. But the vastly more controversial question is the converse: Given a racial identity -- African or Asian, say -- can you infer anything about an individual's characteristics: not just skin or hair color, but more complex features, such as intelligence, habits, personality, and aptitude? /I/ Genes can certainly tell us about race, but can race tell us anything about genes? /i/To answer this question, we need to measure how genetic variation is distributed across various racial categories. Is there more diversity _within_ races or _between_ races? Does knowing that someone is of African versus European descent, say, allow us to refine our understanding of their genetic traits, or their personal, physical, or intellectual attributes in a meaningful manner? Or is there so much variation within Africans and Europeans that _intraracial_ diversity dominates the comparison, thereby making the category "African" or "European" moot? We now know precise and quantitative answers to these questions. A number of studies have tried to quantify the level of genetic diversity of the human genome. The most recent estimates suggest that the vast proportion of genetic diversity (85 to 90 percent) occurs _within_ so-called races (i.e., within Asians or Africans) and only a minor proportion (7 percent) within racial groups (the geneticist Richard Lewontin had estimated a similar distribution as early as 1972). Some genes certainly vary sharply between racial or ethnic groups -- sickle-cell anemia is an Afro-Caribbean and Indian disease, and Tay-Sachs disease has a much higher frequency in Ashkenazi Jews -- but for the most part, the genetic diversity within any racial group dominates the diversity between racial groups -- not marginally, but by an enormous amount. The degree of interracial variability makes "race" a poor surrogate for nearly any feature: in a genetic sense, an African man from Nigria is so "different" from another man from Namibia that it makes little sense to lump them into the same category. Siddhartha Mukherjee
11
When scientists underestimate complexity, they fall prey to the perils of unintended consequences. The parables of such scientific overreach are well-known: foreign animals, introduced to control pests, become pests in their own right; the raising of smokestacks, meant to alleviate urban pollution, releases particulate effluents higher in the air and exacerbates pollution; stimulating blood formation, meant to prevent heart attacks, thickens the blood and results in an increased risk of blood clots in the heart. But when nonscientists overestimate [italicized, sic] complexity- 'No one can possibly crack this [italicized, sic] code" - they fall into the trap of unanticipated consequences. In the early 1950s , a common trope among some biologists was that the genetic code would be so context dependent- so utterly determined by a particular cell in a particular organism and so horribly convoluted- that deciphering it would be impossible. The truth turned out to be quite the opposite: just one molecule carries the code, and just one code pervades the biological world. If we know the code, we can intentionally alter it in organisms, and ultimately in humans. Similarly, in the 1960s, many doubted that gene-cloning technologies could so easily shuttle genes between species. by 1980, making a mammalian protein in a bacterial cell, or a bacterial protein in a mammalian cell, was not just feasible, it was in Berg's words, rather "ridiculously simple." Species were specious. "Being natural" was often "just a pose. Siddhartha Mukherjee